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PREFACE

Decision saking is an issue constantly before si:ner the developer or

user of U.S. Air Force space, missile, tactical, or othar systems. Yot
since ﬂoward'g. significant work of over 12 yesrs ago there has been little
progress in this area on the iuportint methods pioneered by Howard, Because
of the importance of this area to applied Air Force needs the numerous resuits
embodied in this research report were developed and illustrated through
numerous examples presented herein,

This research report was prepured under research contracts supported by
the U.S. Air Force Office of Scientific Research under AFOSR Grent No, 72-2166,
Design of Aerospace Systems, and tha U'.S, Air Force Spact and Missile Systems
Organization under Contract No, F04791.72.C-0273, Advanced Space Giidance,
and this report constitutes part of the final raport urnder these contr:icts,

The research described in this report "Bayesian Decision Theory Applied
To The Finite State Markov Decision Problem," UCLA-ENG-7278, by William Ress

Osgood, was carried out under the direction of C,T. Leondes and E.B, Stear,
Co-Principal Investigators in the Schools of Engineering in the University

of California at Los Angeles and Sante Berbave, respectivily.
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. the expected reward or gain is chosen. Wken there is uncertainty

ABSTRACT

Ron Joward solved the Markov decision problem with perfect
knowledge of all the transition probabilities and rewards. Ina

practical situation, the transition probabilities may nst be known

by

exactly. Therefore, the problem this research attacks is the Markov.
decision problem with uncertain transition probabilities.

In the case of perfect knowledge, the decision that maximizes

in the transition probabilities, the gains become random variables,
Therefore, Bayesian decision theory is appliad to this problem. A
loss function is defined and an a priori d=nsity is defined. Bayes'

formula and the loss function are used to compute a risk for each

decision. The decision that minimizes the risk is chosen.

s P g

Conceptually the problem 'is solved easily. However, trans-
forming a density over the transition probabilities to a density over
the gains is a difficult problem. The solution of this nroblem is the
main contribution of this discertation. Using these results a
technique is derived that allows a straightforward means to evaluate

the risks for each decision. Examples are presented that illustrate

the technique,
The result of this ravesrch is a logical method to compute the

risks assoclated with each decision when there is uncertainty over
the transition probabilities, The decision maker then selects the

declsion that minimizes the risl.
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Chapter }
PROBLEM DEFINITION

E The objective of this research is to apply Bayesian decision

] theory to the finite state Markov decision problem when the transi-
tion probabilities are unknown. A Markov decision problem exists
when a decisionn maker has available a set of K decisions, Each
decision specifies a partieﬁiar Markov-chain and a set o'f rewards,
The decision makgr.selects the decision that maximizes his gain or

_expected reward,

L

Bayesian decision i(l2ory can be used when there is uncertainty
over the transition probabilitiez, An a priori density is specified

over the probabilities and Bayes' formula i:; used to compute an up-

L

dated posteriori density after observations are recorded. The de-
cision maker selects the decision that minimizes Lis expected loss

or risk. As more observations are recorded the posteriori density

: concentrates its probability mass over the actual values of the transi-
tion probabilities and the risk minimizing decision maximizes the
gain,

ﬁf? It is assumed that the reader has knowledge of the theory of
Markov chains (see Referance [7] ). The following notation is used

in this dissertation, There are N states in the Markov chain under
consideration. The probability of making a transition from state i

to state j is Jdenoted by pij' The NxN transition matrix is denoted

by P. The steady state probability vector is denoted by n.

-
,
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A knowledge of Bayesian decision theory is also assumed (See
Reference [3] ). The following notation is used. The states of nature
"is denoted by 1. The observation is written as x x The a priori
density over Qis & O(w) where w is an element of ). The posteriori

density is denoted by §(w lg_cn) and is computed from Bayes' formula,

Ax, [w) & (w)
$w(x ) = gDl
iz, L, [ w) 4w aw

where 1(_:_c_n| w) is the likelihcod function. For each element w of
and each decision k, a loss L(k|w) is incurred, The risk p(k) is the

expected loss.

okl = J Liklw) gw]x,) dw

Bayes decision k¥ minimizes- ih_e risk,

plk¥*) = miin {oti)}

1.1 The Markov Decision Problem

Once a Markov chai;x is defined, a reward structurc can be
placed over thellutes. Suppose that payoff r is received when state
i is occupied. The N-vector r= (rl, . rN) is called the reward
vector associated with the N-state Markov chain., In steady state,

the expected payoff or gain is denoted by Awhere

-~

il
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Now, suppose that there are K decisions available to a decision
maker. Each decisioni, i =1,..., K, specifies a unique N-state
Markov chain with transition matrix Pi. The corresponding reward

vector is denoted by _gi. The gain under decision i is denoted by A

i
where
\1 =< 17_", _r_i >
and
.’li - I’.i pi

The decision maker selects tue decision that maximizes his expected

payoff or gain, In otherwords, he will select decision k* such that

= max {A}
Yex ek

1,2 The Markov Decision Problem with Uncertainty

The Markov decision problem defined above assumes that all
transition probabilities and rewards are known with certainty. How-
ever, there may be a case where there is uncertainty in some or all
of the transition probabilities and/or rewards. The case of perfect
information was developed by Ron Howard [7] in 1960, After Howard
completed his work others at MIT continued to investigate this
problem with uncertainties, The goal of these works should have

been to specify the "best! decision against some crilerion. However,

7
i
o

<k

oy

$olig
IET

iroest T

N -
4,
S




their work, summarized by Martin [9] in 1967, did not include a
means to specify a decision,

This research applies Bayesian decision theory to the Markov
decision problem so that a decisior can be specified under uncer-
tainty. The transition probabilities are taken as uncertain, but the
rewards are 2ssumed known.

| Martin showed that if the states of nature are the set of all
possible transition matrices, and the matrix beta density is used as
the a priori density, then Bayes formula transforms observations of
state transitions into a posteriori density that is also matrix beta.
Therefore, the states of nature is defined as
a= {aY, a)...a8}
where A? is the set of all possible NxN transition matrices under

decision i. An element of Qis denoted by w where

W=(P1, Pyieen, PK)

and P, is the transition matrix under decision i.

The end product in applying Bayesian decision theory is a risk
associated with each decision. The risk is defined as the expected
loss. If L(i|w) associates a loss to each decision i when we 0 is the

state of nature, then the risk p(i)'becomea

(i) = E L{ilw)

= J;, L(i|w g(wlx ) dw

a




et

where £(w] X, ) is the posteriori density over Q. The decision maker's
objective is to maximize his gain, therefore the loss will be defined

in terms of the gain., Take element w ¢ (I svhere

W=(P1,..., PK)

To each Pi the steady state probability vector gi can be computed.

Then, for each décision i the gain 4, is given by

Ai = <_11i’; _zi‘>" ‘

Suppose decision i is selected resulting in a payoff of Ai units per
transitior But, if there is a Aj j=L.,..,K such that Aj >Ai then
the decisior maker sufiers a loss of at least Aj - Ai per transition
because he selected decision i instead of decision jo The loss func-
tion L(i|w) is defined as the maxi;mim loss and is givég by '

L(iiw) = max {A. - Ai}*

i<k ? :

Thus, for eachweQ, I:.(iiw) is the maximum loss per transition when
decision i is chosen,

In order to calculate the risk, the expression max {4, - 8.}
- : o 1Sj$K J ' -3
must be written in terms of w= (Pl' v o PK)‘. Gain Ai is written as
b

Ai=<1’£. >

The problem with this expression is that _rii must be specified as an

‘explicit function of P;. Since the steady si:a.te:probability vector _rii

is uniquely related to its transition matrix Pi by p_i = .'r_r.iPi

w




the existence of a function gi = g(Pi) has some intuitive appeal,

Now, gain Ai is written as
A, =<o(P,) !‘i >
i~ "=t &
This expression is substituted to get the desired expression

L{ilw <g(P.), > <oP), > 1.1)
| 1;:1’2{ )}:, (P, ¥ } (

The risk fuhctigg becoine_s

ﬁ(i). =, {géﬂxkg(?j\),_g_j >. <g_(Pi),_1_:i, >}§(Pl, ooy PK h:“)dw

i=1...,K (..2)
‘ The decision maker continues to make oboervations X until he is
satiafied that the po:teriori density hae concentrated a sufficient
amount of probability mass over the actual collection of transition
matrices, Then the risk is computed. The decision that minimizes
the risk is chosen,

The problem is to evaluate Equation 1.2, In picking the risk
minimizing \decision, the abrolute value of the risk is not important.
That ii, the decision the results in the smallest risk, whatever its
value, is chosen. Suppose that risk p(i) is ueed as a reference. The

minimum risk p(k*) will satisfy,
p(k*) - p{i) < o(k) - p(i) k=1,...,K (1. 3)

An alternate way of expressing Equation 1.3 is to say that k* satisfies

the expression,

o




|

R

PSR

p(k*) - p(i) = min {p(k) . o(i)}
k

Now, the expresaion ;)(i)- p(k) is evaluated by substituting Equation
1.2,

- j i
oti)-ok) = [ max {<a®p, 2> <o rt >} guly ) aw
UPS k
gwlx,) dw
= J‘;( <2(Pk),};k > <_<1(l='i),£i >) g(wll‘n) dw

“f <o), r* > Ewlx )aw - f <g(P).r'>g(wx ) dw

= E('Akh_zn) - E(8;]x ) (1. 4)
Thus, expression p(ij - p(k*) is given by
o (1) - pli¥) = min {E(h |x.) - E(t;|x)} (1.5)
Define function 1(k) by
1) = E(8; |x,) - E(8)x.) (1.6)
The decision k* that minimizes the risk minimizes Ti(k),
Tik) = min a0}

Therefore, the problem of evaluating the risk for each decision is

transformed to a problem of evaluating function T]‘(k) for each decision




k=1,..., K.

The expected value of the gain E(Ak[ x ) k=1,..., K cannot be
computed is a straightforward manner. The procedure required is
developed by first looking at a general case in Chapter 2 where there
is one Markov chain (one gain) and the uncertainty over the transition
matrix is a general function hp(P). The expected value of the gain
is E(4). In Chapter 3 the density over the transition matrix is defined
as matrix beta and the observation X, is used to compute.the posteriori
density g(pl -’-‘-n)' The expected value of the gain conditioned on the
observation is E(Alx ). In Chapter 4 decisions are introduced. The
results of Chapter 3 are used to compute E(Akl?_‘,, ) for each decision
k=l,...,K. The risk minimizing decision k* is selected by using
Equation 1,6, An exsmple is presented that illustrates the procedure
developed,

Two secondary issues are discussed in Chapters 5and 6. In
Chapter 5 the possibility of specifying the uncertainty over the steady
state probabiiities rather than the transition probabilities is explored.
In Chapter 6 the theory used to evaluate the expected value of the
gains is used to investigate the convergence properties of two state
Markov chains,

The results of this research are summarized in Chapter 7 and

several topics for future résearch are outlined,




Chapter 2 .

COMPUTING THE EXPECTED VALUE OF THE éAIN

The objective of this Chapter is to compute the expected value
of the gain E(8) for the general case where there is one Markov chain
and the uncertainty over the transition matrix is given by density
hy(P). The gain is

b=<m 2>

=<g(P), r>

where the existence of function g(*) is hypothesized. The expected

value of the gain could be expressed as

E@ = [ <a(P) x> bpiP) P (2.1)
AN
where AN is the set of all possible NxN transition matrices. Even
though Equation 2.1 looks simple enough there is a serious complica-
tion. That is, set AN is not a closed and convex subset of Eucledian
space, This complicates the integration operation. What is required
is some transformation that allows integration in Eucledian space,
The transition matrix P has N rows, each of which are proba-

h h

row is called the it transition vector and is

bility vectors. The it
denoted by B; Suppose that ) is known with certainty, Clearly, this
knowledge conveys no information about Pyrev 1By 1Pis1’ BN In
other words, each row of P should be probabilistically independent.

Therefore, density hP(P) can be written as,




hefP) = hy(p). . . Byg(y):

where “1‘21’ is a density function over the set nN. the set of ali N
dimensional probability vectors, Equation 2.1 becomes

E(4) = - f an<g(P). >hy(p)). . chy(Ry) dpye ol (20 2)
To see how a probability density hi(g‘) over IIN can be transformed
to a density over a closed convex set, a two dimensional case is
examined. _ '

Consider a two dimensionsi brohability vector p = (p,, pz). The
density over p is denoted by hg(pl’ pz). Since P and p, are con-
strained to satisfy the conditions,

) pp P20
i) Pp+Py = 1

the probability mass must lie over the line Pp+Pp = 1 in the positive
quatrant as drawn in Figure 2.1. A simpler way to characterize the
density would be to define it as a function of a single variable s where
s = 0 corresponds to p =(1, 0) and s = ,/Z corresponds to p =(0,1), for
example. In this case the density over p is denoted by { E(n) and is
drawn in Figure 2.2, Notice that density hg(pl' pz) is transformed to

density f 2(l) where s belongs to the closed convex set

{se EIIOS_nsJZ}

Vector p and scalar s are related through the equation

p=(LO)+ 75 (-L)
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£(S):

Np (P +Pp)

Figure 2.1 Density fp“’x' pz)

Figure 2,2 Density hp(s)
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Now consider a two -di mensional transition matrix P. The
density over the first row is denoted by fl('l)’ and the density over
the second row is denoted by fz(‘oz}. " Since the rows of matrix P are
probabilistically independent, the density over matrix P, denoted by
fp, is given by

Iplt) = 1,(8)) f5(85)

3

where

L= (9y9)

A density {(t) is drawn in Figure 2.3. Notice again t'hatet{:e new
density fp‘i ) is defined over a closed convex suﬁ;et‘ of Ez.

This notion of expressing ao.two dimenstional Aprobability vector
as a4 scalar is exténded to the N lt&teoca!e in thio Chapter, Density
%‘ni(gi) is sasily transformed to density £i(3-i) where 8 is a member of
set TN which is a subset of EN°1. Density hP(P) «8 transformed to

density fp(.'; } where

fpu) = fl(!'l) sos N('!N)

L3

(80 «oer By

and t is a member of set Ty = TyX...xTy, (N times). I will be shown
that Equation 2.2 can be written as
E(d) = f <WEIU, £> (L) dt + <m_, 1> (2.3)
N
TN

This expression can be evaluated either analytically for special Markov

~hains or numerically on the computer,

12
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In order to evaluate Equation 2.3, function w(t) must be derived,

density fp(g ) has to be transformed from hp(P). and matrix U and

vector 1 have to be defined. The steps taiten to evaluation Equation
2,3 are, '

1) Sets TN and Tg are defined,

_2) The trangfo;matjénl* that take probability vector Pin !IN
 to vector s in TN.' {and:transition matrix P in Mo vector
tin T;: are deiihed; Matrix f! and vector I, are defined.
|
3) Functions w(t) and o(P) are derived.

4) Given a tnnlitioﬁﬁ?f::;'i;tiix P u::d density hp,(P), the density
h,(m) over the m"‘idly"'»ff'ta’e pi‘éﬁaﬁilit'y vector is sought,
.The tunoformed dennity £, l);il computed from density

(P) Although thil developmeut is not used in evaluating
Equation 2. 3,“it is included bécause of its fundamental

importance. ﬁqgution 2.3 could also be written as

K

E(A)=_4 <aU,r >f.(s) d£+<_11°,3>

'5) Equation 2.3 is evaluated,

N‘.
2.1 Sets TN and TN

All vectors in HN have the following property. Given any two

probability vectors _21 and By the difference vector P)-B, lies in
the hyperplane H defined hy

H:{)_:CEN |<_:£,£>.-.0}

14
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Conceptually, probability vectors '"touch' hyperplane H as shown in
the three dimensional example drawn in Figure 2.4. Since every
probability vector can be uniquely represented by a point in H, the
set of all these points is a closed convex subset of EN’I. His an

N-1 dimensional hyperplane, therefore a basis x can be constructed

in H where
X= {9-1’32’ te "EN-I}

Then any vector ;, ¢ H is given by

Z-=
-

Sy

Vector z with respect to basis x is given by-the N-1 dimensional

vector 8 where
8= (sl. LPYRRRY .N-l)

Now, set x together with any vector z_ in IIN is clearly a basis of N

Since {X,m }is & basis in EN, every vector p ¢ My can be

written as

Vector p - 'N "—o lies in H so

0=<2-5N_11°,5_>

=_<2,2>- 8N<ﬂ°,2>

=l--aN

15
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Therefore, 8y = 1 and vectox' p with respect to basis {x, n°§ is given
by

(al, Boresns 'N-l' 1.)
Since the Nth compenent is always unity, a”prol;ability vecfor p will
have a unique repreaen‘gtionfiﬁ basis X given by the N-1 dimensional

vector s where -

The set of all probabxlity vectors is g1ven by IIN ‘To each

NI'

element p of II there is" aiuniqqewa in setmE The collection of

8 representing all p_ e II is denoted by '1‘N where

N-1 ‘
T {scE lsU " ,p,T_ ¢ } 2.4
SR N,,' Mid .3 (’\‘2; ,,?.9.>p'12 HN, .,( )

-

An NxN transition. matrix P can be represented by the NN

N N P

vector in E 'x...xE.",

4

T ‘(21.’,,22; o 2y S .
where p, is the i*® row of matrix P Since each p. is a veetor in 0o
it has a unique representation 5 in TN' Therefore, matrix P has a
unique representation in set Tyx...xTy given by (8,,8,,...,8\).
The set Tyx. .. ¥Ty i denoted by Ty and the N(N-1) dimensional

vector (8,,. . ._Q_N),h denoted by ¢,

2.2 Transformations H,‘,w T, and AN Tg

In this section the transformation that takes probability vectors

to their representation in TN is derived. Also, the transformation

17
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|
i that takes transition matrices in to their representation in T, is

r 3 derived,

First, the transformation from IIN to TN is specified, Vector

R-T, lies in Hif p cIIN and is givgn by

N-1 9
p-n = Z 8u
i=1
The reciprocal basis ¥ = {xl'XZ’ vee 'XN-I} of basis vactors ¥ is
used to generate the expression 9
. N-1 ,
<R- ey > =Ky w4
= ’j j=lgooo’N"1
Therefore, the repiesentation 8 of probability vector p sa‘isfies
)

s=(R-0)V

where the columns of matrix V are the reciprocal basis vectors.

Take any vector 8 ¢ T\, Vector z = sU lies in H so there is

‘s vector p ¢ HN such that p - n, =zor’

n=p_°+p_U

Next, the transformation from N ¢o ’I‘g is specified, Take

:
f

any matrix P ¢ AN. The rows of P lie in “N Vector s, is the unique

¢
representation of the lth row p; where f
‘!i=(£i-.rf°)v i=l,oo~’N 3
¢
§
18 ‘
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This expression specifies vector t = (3-1'3-2' oo ’-’-N)’ .the representa-
tion of matrix P in set Tg.
Now, take any vector ¢ ¢ Tg . Vector z; = g_iU lies in H.
. ' Oth
Therg exists a vector B; an such that B =T+ 5;U. If the i row

of an NxN matrix P is taken as By then matrix P lies in AN.

2.3 Specifying a Basis x

In this Section a particular basis Xis specified. This basis is
used in many of the future developments and examples.
Let ¢, be an N dimensional vector with all zero's except for

th

the i component which is one, Since o, can be any vector in IIN

define _1_10 as

= e (2.5)
Define the basis X by

a ) i=l,ooo,N'1 (206)

=L
=t~ Jz(si+l "I
In order that the vectors w defined above are bagis vectors of
H, each u; must lies in H and the collection X must be linearly in-
dependent. Vector N lies in Hif <u,,e > = 0, Substituting for N

gives

19
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To prove linear independence, take any vector c ¢ EN'I. If

X i a linearly independent collection then cU = 0 implies that ¢ = 0.

Vector cU is given by

U=

N |,.
(2]
e
o
LN
pre
b
[ ]
pe |
[~]
[}
[

)

(0, cl' czo D) cN-l)-(<£-lS->’ 0,.... 0)]

|
- Smmm— ‘-<£lg>, cl'CZ'...’cN-l)

Clearly cU = 0 implies that ¢ = 0 and hence ¥ is a linearly independent
collection.

The reciprocal basis Y satisfies

<zj,gi>= aij i,J=l,ooo,N"l

it can be easily shown that a reciprocal basis to ¥ is given by

!i=‘\/z'?‘i+l i=1,001’N‘1 (207)

Example 2, 1: Consider a three state Markov chain. . A basis
for H, defined in Expression 2,6, is given by

0
JZ 0 2 1

The reciprocal basis, defined in Expression 2.7, is given by

20
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Y=({(J/Zl1]}], V2] 0
0 1

Vectors I Uy Yy Vs and v, are shown in Figure 2.5.

Set T,, in this basis is given by,

N
N-1
TN ={2 ¢ EN-I ' (;/% E si(—e-i-i-l.ﬁo) +H°) ¢ HN}
i=1
N-1
N-1 1 1
={s¢ E b (=2 -<e,8>)n  + — 88,1 ¢ HN}
| 7 ot Xt

or

Ty ={_§ ¢ EN-1 i (,,/Z—I-(Jz - <313>),81/.J2', cees sN_I/ﬁ) ¢ HN}

Since the above expression contains a probability vector, the com-

ponents must satisfy the conditions

i) ngl—(ﬁ-<elg>)_<_l
if) 0<e,/V2<1 i=1...,N-1
Condition i) after some manipulation becomes
0<<e 8> <42

Therefore, set TN is defined as

TN.-.-. {EQEN'1|0_<_.<£,_|_>_<_./Z, Os_sisﬂ i=l,...N-l}

Sets Ty for N = 2,3,4 are drawn in Figure 2,6,

21
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2.4 The Functions o:AN-o IIN and w:'I‘NN-oTN
The steady state probability vector 1 can be implicitly computed

from matrix P by using Z-transforms or by computing the eigen
vector of matrix P corresponding to the unity eigenvalue, In this
section an explicit expression 11 = o(P) is derived and the desired

expression s = w(t) is specified.

2.4.1 The Function g.:I\N-oII,v
A Markov chain with N states and ~rgodic transition matrix P

is given. The probability distribution over the states at time t ., 18
given by the N-vector n(n). At time tn +° after one transition, the

probability distribution cver the state is

A(n+l) = n(n) P (2.8)

Since P is ergodic n(n) converges to vector 7, the steady state proba-

bility vector, as n—e,

Define NxN matrix F’o by

P = -:0 . (20 9)

The rows of Po are the vector n, ¢ IIN. Givon any vector p ¢ l'lN the

following relationship holds,

RF, "I

Therefore, _t_vo -P Po =0 forallpe HN.
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The expression o, - nin) P o 18 added to Equation 2,8 to get
nin+l) = n(n) P + 5, - n(n) P,
Rearranging gives
Nn+l) = nfn) (P - P ) + 1

The asymptotic behavior of this expression is
n=mP-P)+m
Solving for n gives
- -1
1-E°(1~P+Po) (2.10)

Equation 2. 10 specifies the mapping : P — 1.
The following Theorem proves the existence of (I -P + P c,)'l

when P is ergodic.

Theorem 2.1: If P is ergodicthen(I - P + Po)°l exists.

Proof: The inverse of matrix (1 - P+ P o) exists if the null
space, denoted by N(I - P + Po)’ is void, Takeany x¢ EN.

Vector x lies in the null space if
x(I-P+ Po) =0

or equivalently

25
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Notice that <p, - n , > =0 for isl,...,N, sop, - 1 lies
in the hyperplane H. A hyperplane is a linear subspace, o
any linear combination of vectors in H will also lie in H.
Tharefore the null space is a subset of H.

Now, let x be any vector in H. Then x is written as
x=2aU
Ixe¢NI-P+P))thea

QauUI-P+P)=0

or

aU-oUP+aUP, =0 {2.11)

o

Matrix UPo is evaluated in the following mtnne'r. The ijth

eslement is given by
"oj<3i'-°-> ,j=l,+¢0, N
Since u, lies in H, <u;,e > =0, Therefore, UP_ is the zero
matrix. Using this result, Equation 4,11 becomes
aU=aUP

or

26
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x = xP (2.12)

Equation 2,12 implies that vector x ¢ H is an eigen vector
associated with the unity eigen value, However, when P is
ergodic, the steudy ctate probability vector is the unique eigen
vector associated with the unity eigen value [1]. Therefore,

% is the zero vector and the null space of matrix (I - P + Po)

is void,
QED

Example 2, 2 Consider a two state Markov chain with transi-
tion matrix
/2 1/2
1/4 3/4

The eigen vector z associated with the unity eigen value satisfies

z = zP. Therefore,

z=(2), %))
=({1/2 z, +1/4 Z, 1/2 z) + 3/4 zz)
or
1° %2
Since z is a probability vector
2y +2, = 3 z, = 1

an¢

z = (1/3, 2/3)
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Now, take 0, s (1, 0) then matrix (I - P + Po) is given by

(3/2 ~l/2)
’ - \3/4 1/4

i

Substitvting into Equationl 2,10 gives

3z -1/2\!
n= (1, 0)
3/4 1/4
1/3  2/3
= (1,0)
\--1 2
= (1/3, 2/3) 9
2.4,2 The Function wit-=8
The equation 8 = w(t) can be derived from equation 7 = o(P), 3 i
using the transformations T-s and P-t. However, the equation
8 = w(t) will be derived independent of 7 = a(P).

Vector n(n) can be expressed as

Tn) =T, + 8(n) U
Substituting this expression into Equation 2.8 gives

s(n+l) U =sm) UP+ P -1 (2.13)
Using the identity UV = I, Equation 2,13 is transformed to

8(n+1) = 8(n) UPV + 1 _(PV - V) (2.14)

The asymptotic behavior of Equation 2. 14 is given by

§
é
{
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' . 8=8UPV+m (PV-V) (2.15)
? Matrix PV can be developed further. The ith row of matrix P
is given by
G BTty U
Therefore, matrix P satisfies
G P=P, +8U (2.16)
where matrix S is defined by
¢ U}
S=
AN
Q
Post multiplying Expression 2. 16 by V gives
PV=P V+S§ (2.17)
; ¢ .
oL since UV = I. Substitute Equation 2.17 into Equation 2.15 to get
8=8UPV+sUS+n(PV-V4+S5)
A 0 ‘
2“ Using the identity UP0 = 0 and the ' fact that TP, = I
' i 5:8US+nS
O
é‘ Solving for s gives
, 8= S - us)! (2.18)
lo

Symbolically, Equation 2.18 is written as

| 29




8=wt)

>

E_ = (.’_19_!_2» see o_u_N)

The following Theorem proves the existence of (I - US)"l when
P is ergodic,

Theorem 2,2: If matrix P is ergodic, then (I - US)"l exists.

Proof: Matrix I - US has an inverse if it has full rank. Ex-

pression I - US can be written as

1-US=1-UPV
=UvV - UPV-l-UPOV
=U(I-P+P°)V

Matrix 1 - P+ 1-‘0 has rank N when P is ergodic. Matrices

U and V have rank N-1. Therefore, matrix Uit -P+ PO)V

is an N-1xN-1 matrix with rank N-1,
QED

Example 2. 3: Consider a two staté Markov chain. Take LR

and U as defined previously

Eo =(1,0)

u =(-1,1)

" Equation 2. 18 becomes

®)
s =(1,0) (8z

g
e ——

—

1}

j

-

1

s

[

—
A
o »

N ot
e
| S— |

-

and
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. ’ ;.",,u‘"if‘s:;}d‘: ‘ “J‘
2.5 Comp uting ;fﬁ(_'_s_;‘)f‘ffom fﬁ(-t- )
The probability distributiza over set AN .was given as

Move e oe t

bp(P) = hy(p;)- - + hyglpy)

“o

Density hpf(i‘:)!ean be. ea”e'ily"~\*t”rans‘forx;§ed~to density fp(t). The pro-

cedure will be outlined in'the iext Chapter. Density fp(t) is trans-
formed to deneity | g)jpﬂv‘e% the set Tn qs@ngt the equation s = w(t )
in this section. ) . N

If the function w( ) was one-to-one and continuous then the‘
density f (s)'would be simply 'fp(w/ (sv)) However, the function

w(*) is many-to-one and. the inveree set w (s) is dense in Tg ~ There-

R Y A
fore, density f.(s) is computed by fu'st constructing the distribution
function over set TN and then taking the ‘derivative with respect to
vectors in 'I'N

The distribution funchon, F (a). is the probabxlity mass over

. the 'set

As{geTylesa)

The inverse set y'l(A) is given by

--I(A) ={‘_t_ ¢ Tg | wit) < a}

The distribution function can be written as

31




Fp(a) = f fn(s) ds
A

or

ras [ o
v (A)

The density £.(s) is computed by taking the derivative of F" (a) at

a=s,
N-1
£ (8) = A C 2.20
"(2)-3“1"'5"1\!—1 azs (2.20)

Consider the inverse set v_z'l(A). The expression w(t) < a can

be written as
nsa-us)lca
using Equation 2.18. Rearranging gives
(m, +aU)S <a
Let vector o, +au be represented by vgctor Y, where
=L z- <a,e>85,000,8y )

V2
if the basis X defined previously is used. Notice that when a ¢ T,

then y ¢ I!N.‘ Now, the expression yS is written as

where
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-<a,e>
2= .
ﬁ N-1
O I LT 5
| ey 1/"/ZIN 1
and IN-l is the (N-1)x(N-1) identity matrix. The notation Ba is

employed to indicate that matrix Ba is a function of vector a.

Using the above development, the inverse set becomes

-1y N
w (A)"{E.‘ TN | .t_Ba

IA

9_} (2.21)

Once vector a is selected, the above expression specifies a well

defined subset of Tg. In the N state case (N>2) both integration and

differentiation in Tg can be carried out on the computer.

Example 2,4 Consider a two state Markov chain with reward
vector r. The density fp(g_) = fl(sl)fz(sz) is assumed known. Set A
is given by

A={aeT,lasa}

and set _v_r'l(A) is

wlw={ter; |8, <a)

Expression E_Ba becomes

\/z - a
B, = o0y | 2
a
Je
33
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) 8,(/2-a)+8,
JZ

Therefore, set y_’l(A) is
v_v_'l(A) = {1:_0 T%ch(./z -a)+ s, Sﬂa}

and is drawn in Figure 2,7,
Density f (a) is computed for two cases: ﬁg <a<.2and
0<ac<i2/2
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v( ' to Figure 2.7 Set v_&{'l(A) '
(
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CASE1: J2/2<a< e

aﬁ+asl-ﬁsl
JE Y
F (A) = f £(s)) £,(s,) ds ds,
sl=0 lz=0

using the fact that fp(ll, sz) factors into ﬁ(sl)fz(sz). Continuing, '

ay2+s,(a-J2)
J2 a
F,(A) = f £(s)) f,(s,)ds, | ds, :
cl=0 sz=0 :
JE ]
= f fl('l) g(sl,a) dl1 ]
al=0 1
{
Computing f,(2) from Equation 2. 20 gives 3
\ JZ
fr(a) =gy [ f(8) g(sy.0) dn,
sl=0
JZ
= f f(s)) = g(s),a) ds, (2. 22)
%120

The function 3-3— g(ll.a) is evaluated using Leibenitz's rule,

Ba- () 3 [

Ta a
g, (aﬁ+:1(ﬂ-a)) (a:;/f) (2.23)
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Substituting Equation 2. 23 into Equation 2,22 gives

i a/2-3,(/E-2)) s/
£ (a) = f £(s) £, \— L ds,
slzo a
CASE II: 0<a<42/2
a(v2-s,)
/2 (s -32)
Fyla) = j i) || e (o) an, | as,
2=0 sl=0
= fz £z(sz) b(az,a) dsz
sz=0
2 )
fﬂ(a) = fz(sz) = h(sz,a) dsz
2=0
Finally,
w 2 o (awz-sz)) 2% s,
a)= 2'%2) 4 - ®2
I{;O Wa (Jz_a)z
To summarize,
( ﬁ .
WZ-8,)\ 2-VZs, I
£,(8,)f ds,, 0<s8c<?=
lo 2' 72 1(‘/2-3 )(Aﬂ-a)z 2 2727

£(s)={ "2

vz a8, (/Z-a)\ »
S\l ( ~ ‘:( :’) 1‘? asy, Fosit

a

\ sl=0

37
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2.6 Evaluating E(4)

§ The gain is given by 3
% .\ =<£,£> (2026)
% Probability vector 7 can be written as 3
g ma=m +8sU
g o .
f n=n +wWE)U f
; Substituting into Equation 2. 26 gives
A o
: A= <_T_to,_x:>+<!r_(_t_)U,£> i
Since density hp(P) is assumed known, density fp(s. ) is known. ;
b J
Therefore, E(04) becomes,
E(8) = f <w(t)U,r> fp(ﬁ) dt + <n,r> (2.27)
N

where

w(t) = n_s( - us)”!

Example 2,5: Consider a two state Markov chain with known
density fp(_t_ ) = fl(al)fz(az). The reward vector is r. The expected
value of the gain using Equation 2. 27 and Equation 2,19 is

) JZ
E(8) =<y, x> f A fi(s))y(s5)dsdsyt <1, x>
2 Vers -8
T
2

o

3

Il
N
3
1
1
.
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2.7 Ergodicity

The concept of ergodicity in the set TN

N
a transition matrix has all non-sero entries, then it is ergodic [9]

is developed next. If

Since the equation 1 = o(P) holds for all ergodic matrices P, the
equation s = w(t) holds for all vectors t that reprele:;t ergodic
matrices. The subset of Tg that corresponds to non-ergodic matrices
must be identified. If this subset is assigned non-.zero probability
mass by the matrix beta density, the technique of computing f"(_n_)
from fp(_t_ ) using 8 = w(t) may not be valid.
Take a vector p ¢ IIN . Probability vector p can be thought of
as a row of matrix P and is written as
p=n,+8U
-110......0

=(l’°’000.0)+. -1 0 } 0 ...0

L
Tz ;
‘1 0 .....01

=(1,o,....0)+—‘\;‘(‘ <:o_.;_> '1""’8N°1)

= (1 e _!'£>o .l'..".N-l)

L <
N/

If p; = 0 then'either 3, , =0 or<s,e> = V2, in the case where i=1.

g in set %, these two conditions place

From the definition of set T
the resulting vector t on the boundary of Tg.

In the next Chapter the matrix beta density is defined. This
denrity assigns all its probability mass to transition matrices that

have all non-zero entries, Therefore, the matrix beta density

39
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: assigns zero probability to the boundary of Tg. Recall that equation
E 8 = w(t) does not hold on the boundary of Tg. Therefore, the inte-

g

% gral of w(t) times the inatrix beta density over Tg exists. Further,

the method of computing £,(s) from fp(g using 8 = w(t) is valid
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Chapter 3
COMPUTING THE EXPECTED VALUE OF THE GAIl;I
CONDITIONED ON OBSERVATIONS

In the last Chapter the uncertainty over the transition proba-
bilitiez was characterized by a general density function hp(P). In
this Chapter density hP(P) is specified as matrix beta, ()wt:s'ex;vations
x, are recorded {rom the states of niature £ . The posteriori density
is computed using Bayes' formula. The expeéected value of the gain
conditioned on the observations is computed from the posteriori

density.

3.1 The Matrix Beta Density

The transition probabilities P = [pij] are said to have the
matrix beta density with "parameter'' M = [mij] if P has the joint

density
N
m,.-1
xM) J (p) U AN
N ksl' "ij"
fM’(PIM) = j=1

, Pe

0 , elsewhere

The normalizing constant k(M) is given by

N (M)
kM)= NI —gp——
j=1
where
41
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The "parameter" M is an NxN matrix such that mij >0 i,j=1,...,N.
Notice that the rows of P are independent random probability
vectors when P has the matrix beta density, Therefore, the density

function can be factored as

N N
fya(PIM) = B by (p, Jm,)

th

where m, is the i" row of matrix M. The pi'qbability density

hi(gilr-’-'i) is given by

. N mij"l
+ hy(p; lmy) = k(m,) 1 ey (3.1)
Ja
whe;c
(M)
B TUmyg)

Density *‘1‘21"21’ is the density over the i row of matrix P, and is
called the vector beta density with ""parameter" m, .
The following statistics on Slj are derived using the density

function in Expression 3,1:
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o - - 1) - B
i) E(pij) = pij '.'--,nf' : .

~ . ni'(Mfmi ) .
ii) Var(pij) = v (M T (3.2)
i1

3.2 TheA Priori Density

The states of nature (2 in thé casé of a single Markov chain is
just the set AN. The a priori density over AN is specified as the

matrix beta density with "parafn_éfer" M}

() s uaPIM)
Given this ﬂefinit‘iqn,. the problem becomes how to specify the ele-
, ments of matrix M so that the a priori density reflects, in some way,
the a priori knowledge of the transition probabilities. Since the
transition ye‘ctoxja Ei are probabilistically independent, the fowa of

M can be selected independently.

For example, suppose the value of m, is specified as

M) Myp S eee My =m

The expected value of sij is given by condition i) of Equation 3.2,

i
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™y
E(pij =5
i o
...Ln..
~ Nm
I | . ‘o
N | . = N’ -J~1,ooc,N

The magnitude of m does not affect the expected-value,
the magnitude does affect the:variance: arﬁjd'}c'o'v&rianc‘e.

my, =m into condition ii),-z;nd' 'iii). gives

Var(;ij),‘ "2""‘""' j=1,..4,N

N~ (Nm¢1)

COV(pij Pm) "'Z""-l""" . J=1!“: ves N

N7 (Nm+1), -

As m increases vax(p;;) and co'v'(i;‘-i?jpf ) goito:zero,

However,

Substituting

vl

The example illustrates the fact that the relative proportiona

Foe e

will speci!y ‘the variancﬁ and! cov’ariance. Iu otherworda, 1f P—i ia the

expected value of ni thon mi vull be given by mi = o Bi ‘Where o > 0.

The magnitude of o lpeciﬁel the variance and covariance. -

Example 3.1: “Consider a two state Markov chain. Let

m;; =m, = k’ - i=1,2

where k is a positive integer. The expected value of 'éj is given by

E@) =1/2 i,j=1,2
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The variance and covariance of ;ij are given by

~ - 1
Varley) * qrzkeT)

c o -1
°V(Pyj Pin) = T0ZGT)

The values of var(’f:’ij) a;nd cov('f:;ij 'i;in) £5r several values of k are

listed in Table 3,1,.: 7 ! L

fﬁi‘f"éiéh':ﬁi:fii‘é'"ASf"k"th : densities hi(B;' x_:gi) i=1,2 are given by

N

; hi(&h}}i)( = k(!_l}i) ng (pij)k-l
Cm) = e

Density hi(Bilxgi) can be drawn as in Figure 2.1, or can be trans-
formed t6 a densi.ty fii'ii@i) a‘s drawn in Figure 2,2, The details on
how fi(ailr_gi) is computed is covered in Section 3.4, However, as
seen from Figures 2.1 and 2, 2 density fi(ailx_r.xi) has the same shape
as density hi(gi‘lxz_\i) inthe two state case, and therefore should cause
no confusion. The transformed density fi('ilxl‘i) is drawn in Figure
3.1 for several values of k. The density is seen to concentrate more
of its probability mass near s=0,707 as k increases. This is equiva-
lent to s.aying that the covariance and variance are going to zero as
k increases.

The following method is proposed to choose matrix M in the

a priori density,
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Table 3.1
k Var(pij) COV(pij Pip)
1 0. 05 -0, 05
2 0. 028 -0. 028
5 0.012 -0.012
15 0.004 -0. 004
30 0. 002 -0. 002
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1. I the transition probabilities are completely unknown

set

mij=l i,J=1,oot,N i

2. If the knowledge of the transition probabilities is

more precise, select vectors m, i=l,...,N such

that the resulting expected values E{ﬁij) lie in the
expected range. Select the magnitude to be pro-

portional, in some way, to this knowledge.

9
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3.3 The Posteriori Density

The posteriori density over AN is computed from the a priori
density, observations taken from the Markov chain, and Bayes'

formula. I..ei:‘g_cn = {xo. Xyrooo ,xn} be 2 sequence of states observed

from the N state Markov chain where X the initial state, is known,

The probability of cbserving X, is given by Py x Px x p x !
1 7172°°° Tnel"n

where p is the probability of making a transition from state i

XX+l

to state j in sequence X Let fij denote the number of transitions
observed from state i to state j in sequence X The NxN matrix
F= [fij] is called the transition count matrix of the sample X

The conditional probability of observing x givena P ¢ AN is

denoted by 1(x_|P) where

S A

TRpRRe

Ux P =p, ...,

o1 n-1"n %

N K
£ .

I (p..) "ij ¢
isp Y %§
j=1 RS

The function l(ggn lP) is called the likelihood function,
The posteriori density over AN, denoted by Q(P|_:_:n), is com-

puted using Bayes' formula

1x, |P) & (P)

v ceckronbiasdaii moiRe i

(P |x,) =
Z\'N Ux |P) & (P) P ;
N g
- , ey :
S 1 imre @ e =

ot SR
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Thus, g,(PI_:En ) has the same form as the matrix beta density with
parameter M+F. Since f ,E(Plx )dp=1, §(P|x ) has the form
N -n “n
A
§(P|x,) = fiys (P|M+F) (3.3)

Martin [9] proved that as the number of observations goes to infinity

the density fl:m (P|M+F) will concentrate on one P ¢ AN.

3.4 The Posteriori Density f(t |M+F)

This section deals with the transformation of fgm(P|M+F) to
fo(t |IM4F).

Given the matrix beta density over AN,
f71a P MAF) = h(py [my4)). « b (py Tmy )
the corresponding density over Tg
£P(_t_1M+F) = fl(-'-l'e-‘l*'z-l)' . .fN(g_N|r_r_xN+£_N)

is derived by transforming the factored density hi(nih}_\i-l-i i) to the
factored density fi( _gilr_r_xi+_§_ i) instead of transforming £§6(P| M+F)
to fp(§_|M+F) directly. A basis for EN is given by ¥' = {x, 'no} .

Transition probability vectors B have the following representation

in basis ¥

(sil"iZ""’siN-l’l) i=l,..., N
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The transformation that takes N vectors in the natural basis to N

vectors in basis X' is the NxN matrix V!

ve [vie]
Therefore,
('il' Y RYRT 1) = (pil' ves ’piN’ v!
= KBI’!I > 00 '<2i'-'-'-N-l >, <2i’3> )
The Jacobian of this transformation is the NxN matrix J where

vT
J= e s 00

The density fi(lil'.'.‘i'*i ;) is given by

o1
fi(a lmyHy) = Formy BOotaUlmprsy) (3.4)
Therefore %
b
N A
_ 1 5
fo(t | M+F) -igl Fety Ri(mote; Ulmyf)) (3.5)

o

A RS R S

Example 3.2: Consider a two state Markov chain. Density
2 .
st(p|M+F) is given by

fim(plmr) = hy(p; Im ) +1,) By(p, lm,4f,)

L. '.',EE‘ ria

where

s
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T(M+F,) m,  Hi, A TALD .

h (P, |m.+f.) = == P : 1,2
RS L LU R r(mn+fu)f‘ﬁiz+fi2) il i2
The density over Tg fp(t_ |M+F) is given by
fo(t |M4F) = £,(8; |*1!1+£1) £5(8,|m,+1,)
where
T'(M,+F,) s, \m, . +f
(s Jmy+e)) = — (1‘ 'i') i
JET(my +, ) )T(myp4+,) \ V2
(3.6)

s, \m,.+f
(_1) i2*e ),
J2

det 7] =4 [ : : ]
t = det
) 102 1.J2

and

- vz

3.5 The Posteriori Density f (s|M+F)

The posteriori density over Ty, fn(s|M+F) is computed from
the posteriori density over Tg fp(_t_ IM+F) using the results of
Chapter 2, Density f,(s|M+F) is given by

N-1
fn(8| M+F) = 8 Fy(a)
‘l... .N-l g=!-
52

5

PUNPRSE




e

L FReER

e

GRS S RPN OER IR 5
A 4

P R L P A P I T P SR A e TR

TIPSR ST

where

Fp(a) = / fo(t | M+F) dt

-

wla)
v =feeTy|en, <a)

Consider the special case of a two state Markov chain. Density

fr(s M) is computed by substituting Expression 3.6 with F = [0] into
Equations 2. 24 and 2. 25,

-1
JZ M
my-l m,, -2J2':+usz

[ ko) / WE-5) “ s,

3,=0 JZ -8
mlz-l
l(ﬂ-cz) 2-./2 s,
x—ET- Wdlz, 0<35JZ/2
£"(0|M) = ¢
/e m,,-1 m 8.(J/2-8) P17t
kM) [ WZe) s ‘z(—‘-;-—)
sl=0
mzz-l
x('*/z":(ﬂ “)) (fg) ds, ﬁgaiﬂ
{
where

4-M,-M,
k'(M) = k(M) /2

The above expression can be manipulated to get
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2 J2-

-8 j=°

£ (s|M) =
mzz—l JZ

m22+m21-2 JE
k'(M) (QE_’.) (—2") Y xj(s)wj, =

. s j=0

\

where

w,= 2 A

cpij = i+j+m21+m12
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1 k'(M) (._.'_.)mlz (_*/1..) %1 ngj(s), 0<s< Je/2

(3.7)

<8< 2

0

0
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LTINSy e gr P

E e

myp-l . mjp-1
5 o= (2 )

j=0

Example 3.3: Consider a two state Markov chain. The a priori
density is matrix beta with parameter M given by

Desnity £ (8|M) as specified in Expression 3.7 is

o)) [ )

-sf \./2-8
whar | () ] e
() ()3 Lt e

Density fﬂ(slM) is drawn in Figure 3.2
Example 3.4: Consider a two state lviarkov chain with tran-

sition matrix
0.8 0.2

P=
0.5 0.5

The steady state probahility vector n is
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CHCTE TR T

B

G

m=(5/7 5/7)
and its representation in T, is the scalar s,
s = 0.404

The a priori density over P is defined as matrix beta with parameter

M,

The transition count matrix F was computed from observations taken

from a computer simulation of the above defined Markov chain.

Matrix F at 100 transitions was

74 16

F =
16 19
and at 250 transitions it was
14} 35
F =
34 40

The posteriori density f.(s lM-l-F) was computed by numerically
integrating Equation 3.7 with M replaced by M+F. The resulting

densities are drawn in Figure 3.3, The posteriori density is indeed

concentrating on s = 0, 404,
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Examgle 3.5: Consider another two state Markov chain with

matrix P given by

- o9 0.1
p=|
0.9 0.1}

Vector 7 is

m= (0.9 0.1)
and its representation in '.I'z is given by the scalar s where
s =0.1414

The a priori density is specified as matrix beta with parameter M,

Matrix F at 50 transitions was

and at 100 transitions it was

88 9]

Density .fn(s'M-f-F) is drawn in Figure 3.4, The probability mass is

concentrating at s = 0, 1414,
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8.0 P
-=— 250 tronsitions

6.0

4.0

w—m— OO transitions

~w——qa priori density

Figure 3.4 Density fﬂ(s|M+F)
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3.6 The Expected Value of the Gain

The expected value of the gain conditioned on the observation

*, follows directly from Equation 2.3,

E(b|x ) = {N <W(t)U, 1 > £t [MiF) dt +<n x> (3.8)
N

S Savieniiaath X

ST T, X 1Y R IR g R

23 A
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Chapter 4
APPLYING BAYESIAN DECISION THEORY

In this chapter there are K decisions. Each decision specifies
a unique transition matrix and reward vector., The transition
probabilities are unknown. In order to apply Bayesian decision
theory the states of nature, a priori density, observation, and loss
function have to be specified, With these elements the risk associ-
ated with each decision can be computed, The decision maker chooses

the decision that minimizes his risk.

4.1 Elements of Bayesian Decision Theory

The states of nature was defined as the set

_{,N N N}
n-{A,A peees A

where A{\I =N the set of all possible transition matrices under

decision i. An element wof set Qis

w=(Pl.P2.ooo’pK)

where Pi is the NxN transition matrix under decision i.

The a priori density is defined as the product of matrix beta

densities with parameter Mi i=1,...,K.
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, (@) = (P, [M1) £o(P, | M), ..o (P, [MS), 0 € 0

The observation x, is given by the sequence,

1 T
where
D
K
as Y n
i=1
and _:5:1 is the sequence of states observed under decision i, )
i
_:5; £ {x:, xil..... xi“ }
i i
!
where :
!
15x;5_x I=1,...,K !

j = lp oo 'ni
The posteriori density is derived from Equat'm 1,3,
_¢N 1.l N K K
Bwlx) = (P [M4F) L £y g (P [MU+FT)

The loss function L(i| w) was defined in Equation 1.1,

, _ j i
L{i| w) = mjax {< 2(pj)’3- > - <g(P). >}

o e
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To select a decision after a finite number of transitions a risk is
computed for each decision. The decision maker selects the decision
that minimizes the risk.

There are two problemn in using this technique to sclect a
decision. First, a sampling strategy has to be specified. The
sampling strategy involves the number of transitions recorded under
each decision and manner in which one decision is switched to another.
Second, a stopping rule has to be specified. State transitions cannot
be observed forever., Some ruie that indicates when enough informa-
tion has been collected is needed.

In the case where the decision process makes a finite number
of transitions the sampling strategy is crucial. Two goals must be
kept in mind when sampling. First, the information gained through
sampling should be maximized and second, the payoff should be maxi-
mized. In the case where the decisiun process makes an infinite
number of transitions the sampling strategy is designed to maximize
the information while neglecting the payoff during the finite sampling
period,

In this dissertation the decision process makes an infinite
number of transitions. Since the central issue is computing the risk,
the sampling strategy adopted here is simply to sample equally under
each decision before selecting the risk minimizing decision. A
stopping rule is not specified,

The risk is defined as the expected loss,

65

v R %

S, 100 b ¥

e N SR AT R TRE,

-
-

S R C} E S - T PR YIS S NP L

“b: o M £

a5 T % oS Bl




"y

p(i) = fmax {<o(P.),rj> - <c_ng.),ri >}§(w|g_<n)
o j A v
In Chapter 1 it was shown that the risk minimizing decision k*

minimizes the function ’ﬂi(k),

(k%) = min { T\i(k)}
where

Tk = By Ix) - B |x) (1.6)

Substituting Equation 3. 8 with decisions into Equation 1.6 gives the

desired minimizing function,

M) = <mg, 2>+ <wie) U e IMEY @

TN (4.1)
; f <w(t) U, ' > it | M) at,
TN
k=1,...,K
1<i<K

4,2 Howard's Toymaker Example

The following example was used by Ron Howard [7] to illustrate
the procedure used in selecting the decision that maximizes the gain.
An example of a Markov decision process can be thought of as the
toymaker's process. The toymaker is involved in the novelty toy
business. He may be in either of two states. He is in the first state

if the toy he is currently producing has found great favor with the

66

IR P s e W PP

ENPURT DRI Y e

[ o ST SRR S



public. He is in the second state if his toy is out of favor. Suppose
that when he is in state 1 therec is P;, percent chance of his remaining
in state 1 at the end of the week and, a 1 - PN (=p12) percent chance
of a transition to state 2. When he is in state 2 hc experiments with
new toys, and he may return to state 1 after a week with probability
Pz, O remain unprofitable in state 2 with probability P,y A tran-
sition diagram of the system showing the states and transition proba-

bilities in graphical form is

S~ /pIZ\ N\
P11 @ @ P22
ot NPy S

The transition matrix P is given by

When the toymaker has a successful toy he earns r, units for that

1
week, and if his toy is unsuccessful he earns r, units for that week.
Suppose now that the toymaker has other courses of action
open to him that will change the probabilities and rewards governing
the process, When the toymaker has a successful toy he may use
advertising to decreace the chance that the toy will fall from favor,
However, because of the advertising cost, the profits to be expected

per week will generally be lower. To be specific, suppose that the

probability distribution for transitions from state 1 will be
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B = (0.8 0.2) when advertising is employed, and that the corre-
sponding reward will be r, = 4. The toymaker has two alternatives
when he is in state ]: He may use no advertising ox: he may adver-
tise, Thesc alternatives will be labeled 1 and 2, respectively. Each
alternative has its associated reward in state 1 and probability dis-
tributions for transitions out of state 1. Alternatives will be indicated
by superscript. Thus, for alternative ! in state 1, gi = (0.5 0.5),
ri = 6; and for alternative 2 in state 1, 2‘;’ = (0.8 0.2), rf = 4.

There may also be alternatives in state 2 of the system. In-
creased research expenditures may increase the probability of
obtaining a successful toy, but they will also increase the cost of
being in state 2. Under alternative 1, a limited research alternative,
the probability distribution is 2; = (9.4 0.6) and the reward is
ré = -3, Under the research alternative, alternative 2, the proba-
bility and reward distribution is p2 = (0.7 0.3) and 15 = -5,

The alternatives for the toymaker are presented in Table 4. 1.

A decision is defined as a vector of alternatives in each state.,
Therefore, there are four decisions. Decision one is defined as
alternative 1 in state 1 and alternative 2 in state 2, and so on. Each
decision specifies a transition matrix, For example, decision 3

given by alternative 2 in state 1 and alternative 1 in state 2, gives

the following transition matrix,

0.8 0.2

P3=
0.4 0.6
68
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The corresponding steady state probability vector is
3
n = (0.667 0,333)

and, the gain or expected payoff is

el B iR AN A
USRI -
- -

8, = 2/3(4) +1/3(-3)

7

% = 1,67

=)

A The steady state probability vector and gain for each decision is

g listed in Table 4. 2. If the decision maker has perfect knowledge
g ) of the transition probabilities he will select decision 4, the decision
%( that maximizes his expected payoff.

)

n Now, assume that the transition probabilities are unknown.

% » The states of nature are given by

{

: o= {2 A% A%, a2

i

¢

":\; s The a priori density is

&

1 2 2

; 5o(®) = fy(Py M) .. (P, | M)

&

: s where the '""parameter' M is selected as
' ’g 2 2

1 M=

; 2 2

€

The Markov chain defined above was simulated on the computer and
was observed using the following sampling strategy. Ten transitions
L C\'
69
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are recorded under each decision. The decisions are switched {rom
decision 1 to decision 2 to decision 3 to decision 4 to decision 1, and
so on. The transformed risk function 'nl(i) is computed from
Equation 4.1. The values of ’ﬂl(k) k=1,...,4 are plotted in

Figure 4.1 every ten transition sequence. The results show that
the risk minimizing decision k* is decision 4, the decision that

maximizes the gain.
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: Table 4.1
G Transition Vectors and Rewards
State Alternative Tr&nklition Vec;or Revl:ard
: i k P Pi2 T
2 ( 1 1 0.5 0.% 6
i 1 2 0.8 0.2 4
5 2 1 0.4 0.6 -3
A 2 2 0.7 0.3 5
G |
Table 4.2
Steady State Probabilities and Gains !
(:l
Decision Alternative in | Alternative in ns k A ;
k State 1 State 2 1 i) Kk
1 1 1 4/9 ,5/9 | 1.00 4
¢ 2 1 2 7/12 | 5/12 | 1.42 %
3 2 ) 2/3 |13 | 1.67 ;
, 4 2 2 779 |2/9 | 2.00
N
3
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Chapter 5
BAYESIAN DECISION THEORY WITH THE UNCERTAINTY
'OVER THE STEADY STATE PROBABILITIES

Once density fp(ﬂM-l-F) is specified, the transformed risk
' N
N'
large this task becomes increasingly more difficult and time con-

function 'ﬂi(k) is evaluated by integrating in the set T As N gets
suming. As an alternative, the a priori density could be placed over
the steady state probabilities rather than the transition probabilities.
This approach greatly reduces the computational exercise. In this

case the states of nature are defined as

n={nN,...,nN}

and the a priori density is

1
8o (u) = fyg(mlm’). .. g Im®)
N i i i
where fva(p_ |r_x_3 ) is the vector beta density with '"parameter" m" and

is given by hi(nilr_x_xi) in Equation 3.1 with B replaced by ni.

The posteriori density is also vector beta with '"parameter"

n_,l'*'il 1=1’.00)K

N 11,1 N ,.Ki K, K
§(‘”i2_‘n) = fvp‘.'l lm+£%)... vell |m™+£™)
Observation x is the same as defined in Chapter 4, Vector _f_l is

called the frequency count vector. The jth component of f i is the

number of times state j is observed under decision i in sequence

x
-n
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The loss function for this case is also the same as defined in
Chspter 4. The decision maker chooses the decision k* that mini-

mizes, 'ﬂi(k) . ‘’he expected value of the gain E(Ak|gc_ﬂ) is computed

as
B, |x ) = <E(n*|x ), 25>

The expected value of _qk is given by the properties of the matrix

beta density in-Equation 3.2,

where

}_}N ,
= .+ £,
% £ (mJ+;3

Therefore, 'ﬂi(k) is given by

k) = 31; kJ,gk,_r_k>.&-li- miah, v (5.1)

This expreusion is easy to avalute, No integration operation is
required. Veclors x_gi t=1,...,Kare specified when the a priori
density is defined, and vectors _f_i i=1,...,Kare de.ined by ¢he
sequence x observed from the Markov chains,

The criticsl assumption made in this approach is that tke
Markov chain being observed is in steady state. However, the
Markov chain under observation may not be i steady state. Since

the transition probebilities are unknown, the probability distribution

over the states is unknown,
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Suppore tnat the Markov chain under consideration has been
operating under decision 1 for a large number of transitions. Asaume

that the probability distribution over the states is 11_1 , the steady

state probability distribution. Now, decision 1 is switched to decision

m. The probability distribution over the states after n transition is

: ne) =1 Pp,
? ' If observations are recorded before Em(n)—o Ir_m then the posteriori

: E{\ distribution over the states of nature will not accurately reflect the
% knowledge of the steady state probabilities. The question arked is:
g% ' How many transitions are required before _tlm(n) is ""close enough"
; to _TIm so that observations can be recorded? This question will be
5“, answered for srecial classes of Markov chains in Chapter 6, but

‘ i : ander conditions of perfect knowledge of the transition probabilities.
E, Since the transition probabilities are unknown, these results cannot
f; be used. Aside from these theoretical problems, this approach has
; . great practical appeal, especially for Markov chains with large
E numbers of states.
i}j Example 5.1: The following two state, two decision example
§ ' is presented to indicate that the approach presented in this Chapter
§ does give good results, The a priori "parameters" r_g_xl and r_gz are
E given by
Pg
% rE‘! = xgz ={(2 2)
é The transicdon matrices simulated were

C
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(0.5 0.5
P, =
0.4 006
[ 1
0.5 0.5
P, = :
2" o7 0.3
and the rewards were
rl=(6 -3)
a6 -5

The sampling strategy chosen was to sample twenty transitions under
each decision. When one decision was switched to another, the firsnt
ten transitions were not recorded to allow the probability distribution

to near steady stav>. The transformed risk T]l(i) is given by

Variable n‘(?.) is plotted in Figure 5.1, As the number of observa-

tions increased, 711(2) approached its true value of -0,42.
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Chapter 6
CONVERGENCE PROPERTIES OF
TWO STATE MARKOV CHAINS

Given an ergodic transition matrix P and an initial state proba-
bility vector m(o) the state probability vector after n transitions,
n(n), is given by

n(n) = n(o) P" (6.1)
As n approaches infinity, vector m(n) asymptotically approaches the
steady state probability vector T . Using sets TN and Tg , the con-
vergence rate of m(n) to 7 for two state Markov chains can be stated
explicitly.

In order to determine convergence of m(n) to m both probability

vectors must be transformed to vectors in TN. Vector n(n) can be

written as _1_70 + 8(n) U. For convenience, vector _T_ro is defined as the

steady state probability vector n, Using this definition

m(n) =n+ 8(n) U
and vector M(n) - 7 becomes

n(n) - ™ =8(n)U (6.2)
The next step is to evaluate vector s(n). From Equation 6.1

n(n) =7 + 8(n) U

= (7 + s(o} U) p"
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or

8(n) = 8(o) UP"V (6.3)
Matrix P can be written as

P=P +8U
Similarly, matrix P" can be written as

P! = P, +Smn)U (6.4)
Substituting Equation 6.4 into Equation 6.3 gives

8(n) = 8(0) UPOV + 8(0) US(n) UV
= 8(0) US(n) (6.5)

Matrix S(n) can be evaluated by manipulating the identity

pitl.ptp (6. 6)

The i*h 20w of Expression 6.6 satisfies
n+l n

B =R P
or

T+ _g_i(n+1) U=in+ 31‘“’ U)P
and

g_i(n+l) = _gi(n) 100 24
Therefore

S(n+1) = S(n) UPV (6.7)
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Substituting the identity PV =S+ P oV into Equation 6,7 gives

S(n+1) = S(n) US + S(n) UP_V
= S(n) US
or
S(n+1) = S(1) (US)”
= s(us)® (6. 8)

Substituting Equation 6. 8 into Eguation 6.5,

3(n) = s(o) US (US)*"?

= 8(o) (US)" (6.9)

Substituting Equation 6, 9 into Equation 6,2 gives the desired ex-

pression,
n(n) - 1 = s(o) (US)n U (6.10)

Consider a two state Markov chain, '"Matrices" S and U are

given by

Substituting these expressions into Equation 6, 10 gives
n(n) - m = slo) <8, u>" u

= (<8, u>" s(0) ) u
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Expression <£,}_1_>n s(o) is given by

8 ln
2" %

<s,u>" 8(0) = <n(0)-m, v >

where
v = 1 ("1)
N/ 1
Therefore, Eq:.tion 6.10 for two state Markov chains becomes

n

8, -8
¢ _1 <i(o)-m,v>u (6.11)

n(n) - 7 =

The rate of convergence of n(n) to 7 can be determined by
finding the integer N such that | |n(n)-n|| is less than some small

number ¢ for alln >N, The norm for two state Markov chains is
n

8, - 8
211 |<m(o)-my >

| In(m)-n|| =

since ||ul| = 1. Letting |In(n)- ©|| = ¢ and solving for n results

in the expression

o [ IREo) % 5] ]
0 = USZ'BI . (6.12)
CE TR ]

The expression for m(n) can be used to investigate the con-

vergence of transition matrix P" to the limiting matrix P”. For two

state Markov chains, the two transition vectors of Pn, p_?. gg. are
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written as

Py = 48U
2'2‘ = M+ sz(n)U

Convergence of P® to P” in set 1\2 is equivalent to the convergence

of vector t(n) to g = (S, S) in set Tg

_t_(n) = ('l(n)' (12(‘1,)

8 = <(17--E°),!> =0

Y A

where the expressions for scalars al(n) and sz(n) are derived

LA A s

rather simply from Equation 6.9, ‘
5,(n) = 8 (o) (US)" (6.13) a
az(n) s az(o) (US)n (6.14) &
where 4
8,(0) =8, =<(p, - My > (6.15) ”;
5,(0) = 8, = <(p, - M) v > (6.16) ?

Equations 6.13, 6.14, 6.15, and 6,16 combine to form vector t (n),

O b

BT i

t(n) = t(us)”
or
n
8, - 8
tin) = [2—2] « (6.17)
J2
4
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Example 6.1: Consider a two state Markov chain with tran-

sition matrix

/2 1/2
1/4 3/4

Vector m is defined by
T,=0= (1/3, 2/3)

Therafore, set Tz is defined by

T2={scE'|-¥§s§_/2/3}

Vector t(n) in Equation 6,17 is

w=(3)" (£ 2F)
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Chapter 7
SUMMARY AND RECOMMENDATIONS

The development presented in this dissertation is summarized
in this Chapter and topics for future research are proposed. The
objective of this research was to apply Bayesian decision theory to
the Markov decision problem with unknown transition probabilities.
The Markov chain under consideration had N states and made an
infinite aumber of transitions. There wereK decisions., KEach de-

cision i specified a transition matrix P, and reward vector _{i. The

states of nature (} were defined by

The a priori density over Q, go(w) was matrix beta, Then the
posteriori density Z(w | x, ) was computed from the a priori density,
observation x , and Bayes formula. The loss function L(i] w) speci-
fied the loss per transition when the state of nature was w and

decision i was selected. The risk function p(i) was defined as the

expected loss

ott) = L1l ¢) Eulx,) do
0

The risk minimizing decision k¥ was shown to also minimize function

'ﬂi(k) where

T(k) = B8, 1%,) - B4 %)

Therefore, decision k* satisfies
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W) = min {E(b |x,)- 200 |x,)

where

E(Aki-’-‘n)= f<w(t)U,rk>f (th +F )dt+< rk>
N
In
TN =T x... xT, (N times)
N=In*eee Xy

N-1
TN={_s_cE |_9_U-=p_-17_o.2¢ﬂN}

i e,
-0 et |

c
"
|
)

K

<
1
|
N
lo
w
io
2,
—

)
u

fp(;_lm +FY) = n "e'tTITT hy(m +sU!m +£

111? = ith row of Mk
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¢
_f_i( = ith row of Fk
; k .k
| b 48, UlmSs5) = k) 1 (ni<e, U>) B
' (Mo *8Ulm, +f mi ) 0 (o< Uy

The objectives of this research were met. A simple solution

&1

to the Markov decision problem with uncertainty has been derived,
However, the problem is not completely solved, The following is
a list of topics that require future research,

" 1. The problem of selecting an '"optimal' sampling strategy

and an '"optimal" stopping rule is a candidate for future

B TP R e S e . . R

! research. Martin discusses this problem at length.

K However, his results do not appear to be amenable to

a practical application., It is possible that this probiem
conuld be successfully analyzed by using the framework

¢ developed in this dissertation.

2. In this paper the Markov decision process under con-

sideration was an infinite stage process, The case where

¢
the Markov chain makes a finite number of transitions N
2
! should be analyzed, Here the sampling strategy will be %
: of primary importance because two goals will be present §
¢ 2

during the life of the process. One is to maximize the

payoif and the other is to maximize the information. In
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the infiuité.:stagé' process the payoff was not an issue
since the Markov chain would make an infinite number

of transitions after a decision '‘was selected.

The case where the uncertainty is placed over the

steady state probabilities was discussed in Chapter 5,
This approach simplifies the computations considerably.
However, errors are presen; because the decision maker
does not know whether the Markov chain is in steady

state. If some means of approximating the time when
steady state is "mearly" reached \;trere found, this approach
might be more practical for a Markov chain with a large

number of states,
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